Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 341: 139948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648170

RESUMO

Environmental impacts caused by mining activities (mainly tailings and effluents) are presenting serious challenges for humanity worldwide. In Brazil, clay extraction activities in the Ceramic District of Santa Gertrudes (CDSG) have led to the formation of abandoned drainage wells causing environmental and human health concerns. In the 90's, it was discovered that in one of the production areas, known as the region of the lakes of Santa Gertrudes, several ceramic industries had contaminated lakes created by abandoned clay pits with industrial effluents containing toxic metals. In the present study, analysis of total and dissolved concentrations of Al, Cd, Co, Cu, Mn, Ni, Pb and Zn in the waters of these lakes were combined with the diffusive gradients in thin films (DGT) technique to assess the lability and bioavailability of the target elements, representing one of the first studies to investigate the real environmental impact of contamination caused by ceramic production wastes to an aquatic system. Furthermore, based on the total concentrations and main physicochemical characteristics of each lake, a speciation analysis was performed using the MINTEQ software which data was compared with other surface water systems. The results indicated the presence of metals associated with ceramic residues in total, dissolved and labile fractions. It was verified that Zn, Ni and Cu were the only target metals found in labile form and according to speciation were present in the form of "free" ions, and thus may present risk in terms of bioavailability, although the majority of the total concentrations are within the limits established by the national environmental agency.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Lagos/química , Argila , Brasil , Metais/análise , Mineração , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise
2.
Anal Methods ; 15(27): 3310-3317, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37403536

RESUMO

The diffusive gradients in thin films (DGT) technique pre-concentrates labile species of trace elements, giving time-integrated in situ information about their labile concentrations. All previous DGT approaches for simultaneous uptake of cations and anions have used the hazardous polyacrylamide reagent to immobilize the binding phase. The present work proposes a diffusive layer of agarose and a mixed binding layer of ZrO2 and Chelex 100 immobilized in an agarose hydrogel to simultaneously determine the labile concentration of cations (Mn, Co, Ni, Cu, Zn and Cd) and anions (V, As, Se, Mo and Sb) in aquatic systems. The use of both layers using agarose instead of carcinogenic polyacrylamide as the hydrogel significantly reduces the costs and simplifies the manufacturing process. The proposed device was evaluated through recovery tests, deployment curves and pH/ionic strength tests. The mixed binding layer was compared with commercially available DGT devices for in situ deployment in river water. The relationships between accumulated mass and time (24 h) was linear (r2 > 0.9) for all analytes. The diffusion coefficients obtained were consistent with the literature, ranging from 3.98 to 8.43 × 10-6 cm2 s-1. Except for Zn at pH 8.0, the obtained values of CDGT/Cbulk were within the range of 1.00 ± 0.2 for the studied range of pH and for most ionic strengths. However, at low ionic strength, the concentrations of Mn, Co, Ni, Zn, V and Mo were underestimated. The concentrations of trace elements determined in river water using the proposed devices agreed with the labile concentrations determined by using commercial devices.

3.
Sci Total Environ ; 895: 165189, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391131

RESUMO

Uptake and transformation of arsenic (As) by living organisms can alter its distribution and biogeochemical cycles in the environment. Although well known for its toxicity, several aspects of As accumulation and biological transformation by field species are still little explored. In this study, the bioaccumulation and speciation of As in phytoplankton and zooplankton from five soda lakes in the Brazilian Pantanal wetland were studied. Such lakes exhibited contrasting biogeochemical characteristics along an environmental gradient. Additionally, the influence of contrasting climatic events was assessed by collecting samples during an exceptional drought in 2017 and a flood in 2018. Total As (AsTot) content and speciation were determined using spectrometric techniques, while a suspect screening of organoarsenicals in plankton samples was carried out by high-resolution mass spectrometry. Results showed that AsTot content ranged from 16.9 to 62.0 mg kg-1 during the dry period and from 2.4 to 12.3 mg kg-1 during the wet period. The bioconcentration and bioaccumulation factors (BCF and BAF) in phytoplankton and zooplankton were found to be highly dependent on the lake typology, which is influenced by an ongoing evapoconcentration process in the region. Eutrophic and As-enriched lakes exhibited the lowest BCF and BAF values, possibly due to the formation of non-labile As complexes with organic matter or limited uptake of As by plankton caused by high salinity stress. The season played a decisive role in the results, as significantly higher BCF and BAF values were observed during the flooding event when the concentration of dissolved As in water was low. The diversity of As species was found to be dependent on the lake typology and on the resident biological community, cyanobacteria being responsible for a significant portion of As metabolism. Arsenosugars and their degradation products were detected in both phytoplankton and zooplankton, providing evidence for previously reported detoxification pathways. Although no biomagnification pattern was observed, the diet seemed to be an important exposure pathway for zooplankton.


Assuntos
Arsênio , Plâncton , Animais , Plâncton/química , Lagos/química , Arsênio/metabolismo , Bioacumulação , Salinidade , Zooplâncton/metabolismo , Fitoplâncton/metabolismo
5.
Anal Chim Acta ; 1263: 341259, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37225345

RESUMO

Recently, rare-earth elements (REEs) have attracted great interest due to their importance in several fields, such as the high-technology and medicine industries. Due to the recent intensification of the use of REEs in the world and the resulting potential impact on the environment, new analytical approaches for their determination, fractionation and speciation are needed. Diffusive gradients in thin films are a passive technique already used for sampling labile REEs, providing in situ analyte concentration, fractionation and, consequently, remarkable information on REE geochemistry. However, data based on DGT measurements until now have been based exclusively on the use of a single binding phase (Chelex-100, immobilized in APA gel). The present work proposes a new method for the determination of rare earth elements using an inductively coupled plasma‒mass spectrometry technique and a diffusive gradients in thin films (DGT) technique for application in aquatic environments. New binding gels were tested for DGT using carminic acid as the binding agent. It was concluded that acid dispersion directly in agarose gel presented the best performance, offering a simpler, faster, and greener method for measuring labile REEs compared to the existing DGT binding phase. Deployment curves obtained by immersion tests in the laboratory show that 13 REEs had linearity in their retention by the developed binding agent (retention x time), confirming the main premise of the DGT technique obeying the first Fick's diffusion law. For the first time, the diffusion coefficients were obtained in agarose gels (diffusion medium) and carminic acid immobilized in agarose as the binding phase for La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, which were 3.94 × 10-6, 3.87 × 10-6, 3.90 × 10-6, 3.79 × 10-6, 3.71 × 10-6, 4.13 × 10-6, 3.75 × 10-6, 3.94 × 10-6, 3.45 × 10-6, 3.97 × 10-6, 3.25 × 10-6, 4.06 × 10-6, and 3.50 × 10-6 cm2 s-1, respectively. Furthermore, the proposed DGT devices were tested in solutions with different pH values (3.5, 5.0, 6.5 and 8) and ionic strengths (I = 0.005 mol L-1, 0.01 mol L-1, 0.05 mol L-1 and 0.1 mol L-1 - NaNO3). The results of these studies showed an average variation in the analyte retention for all elements at a maximum of approximately 20% in the pH tests. This variation is considerably lower than those previously reported when using Chelex resin as a binding agent, particularly for lower pH values. For the ionic strength, the maximum average variation was approximately 20% for all elements (except for I = 0.005 mol L-1). These results indicate the possibility of a wide range of the proposed approach to be used for in situ deployment without the use of correction based on apparent diffusion coefficients (as required for using the conventional approach). In laboratory deployments using acid mine drainage water samples (treated and untreated), it was shown that the proposed approach presents excellent accuracy compared with data obtained from Chelex resin as a binding agent.

6.
Metallomics ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914218

RESUMO

This work aims to evaluate the size and lability of Cu and Zn bound to proteins in the cytosol of fish liver of Oreochromis niloticus by employing solid-phase extraction (SPE), diffusive gradients in thin films (DGT), and ultrafiltration (UF). SPE was carried out using Chelex-100. DGT containing Chelex-100 as binding agent was employed. Analyte concentrations were determined by ICP-MS. Total Cu and Zn concentrations in cytosol (1 g of fish liver in 5 ml of Tris-HCl) ranged from 39.6 to 44.3 ng ml-1 and 1498 to 2106 ng ml-1, respectively. Data from UF (10-30 kDa) suggested that Cu and Zn in cytosol were associated with ∼70% and 95%, respectively, with high-molecular-weight proteins. Cu-metallothionein was not selectively detected (although 28% of Cu was associated with low-molecular-weight proteins). However, information about the specific proteins in the cytosol will require coupling UF with organic mass spectrometry. Data from SPE showed the presence of labile Cu species of ∼17%, while the fraction of labile Zn species was >55%. However, data from DGT suggested a fraction of labile Cu species only of 7% and a labile Zn fraction of 5%. This data, as compared with previous data from literature, suggests that the DGT technique gave a more plausible estimation of the labile pool of Zn and Cu in cytosol. The combination of results from UF and DGT is capable of contributing to the knowledge about the labile and low-molecular pool of Cu and Zn.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Ultrafiltração/métodos , Citosol , Zinco/análise , Fígado/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 326: 121452, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958663

RESUMO

Activities related to the offshore exploration and production of oil and natural gas provide economic development and an essential energy source. However, besides the risk of petroleum hydrocarbon contamination, these activities can also be sources of metals and metalloids for marine organism contamination. In this research, we evaluated the potential use of two pelagic (black-browed albatross Thalassarche melanophris and yellow-nosed albatross T. chlororhynchos) and one estuarine bird species (neotropical cormorant Nannopterum brasilianus) as sentinels of contamination of As, Cd, Cr, Cu, Pb, Mn, Mo, Zn, Ni, Ba, V, and Hg in an area under influence of oil and gas activities. The analyses were carried out in samples collected from 2015 to 2022 from 97 individuals. A factor alert; an adaptation from the contamination factor is proposed to identify individuals with high concentrations that possibly suffered contamination by anthropogenic origin. Grouping all species, the metal(loid)s with the highest concentrations were in decreasing order: Zn > Cu > Mn > Hg > As > Cd > Mo > V > Cr > Ba > Ni > Pb. Similar concentrations were observed for V, Mn, Cr and Pb among the three species. Pelagic birds showed higher levels of concentrations for Hg, As and Cd. Based on the correlations and multivariate analysis performed, the results indicate that the ecological niche factor has greater relevance in the bioaccumulation of these elements compared to the habitat. Although some individuals showed high concentrations in part of the trace elements, suggesting exposure to anthropic sources, the direct influence of oil production and exploration activities was not observed, suggesting that activities on the continent are the primary contamination source. The results of this work highlight the role of seabirds as sentinels for metal(loid)s, contributing to the knowledge of the occurrence of contaminants in the South Atlantic Ocean.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Animais , Metais Pesados/análise , Bioacumulação , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Ecossistema , Mercúrio/análise , Aves , Medição de Risco , Poluentes Químicos da Água/análise
8.
Environ Geochem Health ; 45(6): 3541-3554, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36380264

RESUMO

The effect of the presence of gasoline and diesel on the speciation and mobility of inorganic arsenic species in tropical topsoils was investigated. Topsoil samples (n = 25) were contaminated with gasoline and diesel (500 mg kg-1) in laboratory and were incubated under unsaturated conditions and regular aeration for 21 days. Speciation analysis and chemical fractionation were performed in the pore water from control, gasoline, and diesel-contaminated soil samples. Arsenic concentrations were compared to microbiological parameters (microbial metabolic quotient and soil basal breathing) and the presence of ArsM-harboring bacteria. The spike of gasoline and diesel to the topsoils increased pore water As3+ (H3AsO3) concentration. Arsenic mobilization was lower compared to previously reported data for other sources of organic matter (biochar, litter, and a mixture of sphagnum peat moss and composted poultry manure). However, gasoline or diesel addition mobilized As fractions that were adsorbed to the solid phase, in approximately 60% of the soils. Methylation presented an important role in the As3+ regulation in control soils, which was no longer observed after gasoline or diesel addition. The quantification of the labile fractions sampled by the diffusive gradients in thin films technique showed that the increased As concentration in the gasoline or diesel-contaminated soils mostly included inert species. Dissolved organic carbon content seems to be an important control mechanism of the labile As concentration. The increase in As mobility seems to pose a more concerning scenario due to As leaching than to plant uptake.


Assuntos
Arsênio , Poluentes do Solo , Gasolina , Solo/química , Arsênio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Microbiologia do Solo
9.
Sci Total Environ ; 804: 150113, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520925

RESUMO

Arsenic (As) is a naturally occurring element in the Earth's crust, exhibiting toxicity towards a wide range of living organisms. Its properties and environmental dynamics are strongly regulated by its speciation, and the species As(III) and As(V) are the most commonly found in environmental systems. Recently, high concentrations of As were found in saline-alkaline lakes of the Pantanal (Brazil), which is the largest wetland area in the world. Therefore, we evaluated As contamination and its redox speciation (As(III) and As(V)) at the soil/water interface of biogeochemically distinct saline-alkaline lakes of Pantanal wetlands (Brazil). Both conventional sampling and in situ diffusive gradients in thin films (DGT) technique were employed. Zirconium oxide and 3-mercaptopropyl were used as ligand phases in DGT to selectively bind As species. High concentrations of total dissolved As in a shallow water table were found (<2337.5 µg L-1), whereas levels in soils were up to 2.4 µg g-1. Distinct scenarios were observed when comparing speciation analysis through spot sampling and DGT. Considering spot sampling, As(V) was the main species detected, whereas As(III) was only detected in only a few samples (<4.2 µg L-1). Conversely, results obtained by DGT showed that labile As(III) dominated arsenic speciation at the soil/water interface with levels up to 203.0 µg L-1. Coupling DGT data and DGT induced fluxes in sediments and soils model allowed obtaining kinetic data, showing that the soil barely participated in the arsenic dynamics on the shore of the lakes, and that this participation depends on the evapoconcentration process occurring in the region. Therefore, soil acts like a nonreactive matrix depending on the natural concentration process. In addition, our results reinforced the different geochemical characteristics of the studied saline-alkaline lakes and highlights the importance of robust passive sampling techniques in the context of metal/metalloid speciation in environmental analysis.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Brasil , Monitoramento Ambiental , Lagos , Solo , Água , Poluentes Químicos da Água/análise
10.
Chemosphere ; 288(Pt 2): 132592, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34662636

RESUMO

In situ fractionation and redox speciation of As in three different saline-alkaline lakes (green, black and crystalline lakes) in the Pantanal of Nhecolândia (Brazil) were performed by using Diffusive Gradients in Thin films (DGT). The results indicated that As is present mainly in dissolved form. Total As concentration was similar when using different filter membranes, demonstrating that the species adsorbed by DGT devices were <10 kDa. Higher concentrations of labile total As were observed in the center of the lakes, indicating that the nature of the organic matter influences the formation of As complexes. Total As concentrations determined by using ZrO2 DGT were consistent with As concentration in ultrafiltered water samples collected in the black lake. However, part of the data about As(III) obtained in grab samples contrasted with DGT results. The differences observed may indicate that alterations in the species occur during the storage period before analysis by ultrafiltration. As(III) concentrations measured by DGT in the black and crystalline lakes were 1-3 µg L-1 and 4-7 µg L-1, respectively, accounting for only 4%-8% of the total DGT inorganic As. In the green lake, As(III) concentrations were significantly higher at the center (217 µg L-1). Both the phytoplankton community and the dissolved organic carbon influence the As speciation and bioavailability in the lakes of Nhecolândia. The DGT approach used in the present work was able to perform As speciation and demonstrates that in situ sampling analytical techniques are essential in understanding As speciation and its behavior in complex natural aquatic systems.


Assuntos
Arsênio , Lagos , Brasil , Matéria Orgânica Dissolvida , Oxirredução
11.
Environ Res ; 203: 111835, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389350

RESUMO

Metal and metalloid concentrations in the liver tissue of green turtles (Chelonia mydas) stranded on the Brazilian coast (n = 506) were studied using inductively coupled plasma mass spectrometry and cold vapor atomic fluorescence spectrometry. The influences of occurrence registers (date and location) and biological characteristics (sex, age, and developmental stage) were assessed, as well as the temporal influences of oil exploration and production activities. The mean concentrations of Cd, Cu, Mn, Zn, and Hg were the highest reported for the liver of C. mydas on the Brazilian coast. The mean element concentrations followed the order: Cu > Zn > Cd > Mn > As > Hg > Mo > Pb > V > Ni > Ba > Cr. Further, significant differences (p < 0.05) were observed for Hg between the sexes (males > females) and for As, Cu, Pb, Mo, and V between young individuals and older individuals (≥11 years), suggesting a relationship between the dietary shift inherent to green turtle development. These results were corroborated by the curved carapace length (CCL) data, wherein individuals residing in coastal areas (CCL > 50 cm) presented higher concentrations of Cu, Pb, Mo, Zn, Ba, and V than those in the oceanic stage (CCL < 30 cm). The opposite pattern was observed for As and Hg. The influences of spatial autocorrelation (Moran Index) at a global scale and oil production activities on the element concentrations were not observed. However, five hotspots of high metal concentrations were identified via a local spatial autocorrelation (local indicator of spatial association), existing predominantly in a region of heavy anthropic activity within the sampling area. Further, baseline element concentrations were established at the 95% confidence level. Overall, the developmental stage, which is related to feeding habits, had an expressive influence on element concentrations.


Assuntos
Metaloides , Metais Pesados , Tartarugas , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental , Feminino , Fígado/química , Masculino , Metais Pesados/análise , Poluentes Químicos da Água/análise
12.
Talanta ; 238(Pt 2): 123044, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801901

RESUMO

The Diffusive Gradients in Thin-films (DGT) technique represents an ideal tool for monitoring water quality of inorganic species in systems with a high flow such as rivers, streams, lakes and seas. However, in low-flow systems (non-turbulent waters), the influence of a diffusive boundary layer (DBL) formed on the surface of the DGT device has been observed, which can lead to erroneous measurements by DGT. Therefore, the use of DGT in wells for groundwater monitoring is still very limited until now. In this sense, the present study evaluates the applicability of the DGT technique in non-turbulent and low-flow water systems. We propose a new way to calculate the DBL with the objective to carry out a robust DGT analysis in environmental monitoring wells. For this purpose, DGT devices with different diffusive gel thicknesses were deployed in an experimental set-up simulating a groundwater monitoring well. A DBL thickness (for each element) was calculated from the slopes of the linear regressions between the DGT accumulated mass of metal and the deployment time (4, 8, 12, 24 and 48 h) for each of the two diffusive gel thicknesses. The mean DBL thickness (averaging the individual DBL thicknesses calculated from the slopes) was 0.06 cm. The concentrations of the analysed elements were corrected with this DBL with the result that the metal concentrations measured by DGT improved and were highly approximated to their actual total values in this non-complexing medium.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Difusão , Monitoramento Ambiental , Lagos , Rios , Poluentes Químicos da Água/análise
13.
MethodsX ; 8: 101423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430318

RESUMO

The PO4 3- widespread in urban sewages promotes eutrophication of water sources, with harmful effects to natural life and endanger human health. The removal of PO4 3- from urban sewage requires treatment at tertiary level, with high costs and low efficiency in most cases. Thus, a functionalization method for surface modification of kaolinite was proposed to improve the removal of PO4 3- from urban sewage. The kaolinite commercial did not remove PO4 3- from aqueous solution. However, the functionalized kaolinite (FK) was efficient, with a maximum removal capacity of 8.4 ± 0.1 mg PO4 3-/L, within less than 1 min of reaction. The removal of PO4 3- is associated with precipitation of pyromorphite, a mineral with low solubility (Ksp < 10-79,6). Finally, real urban sewage samples (raw and treated) were also tested for removal of PO4 3- using FK, confirming its effectiveness. The central aspects of this development are:•Functionalized kaolinite (FK), with Pb(II), for removal of PO4 3- from urban sewage was studied.•The FK was efficient for removal of up to 8.4 mg PO4 3-/L from aqueous solution, within a short reaction time.•The precipitation of pyromorphite was the mechanism responsible for removal of PO4 3- and FK efficiency have been confirmed for real urban sewage samples.

14.
Environ Sci Pollut Res Int ; 28(40): 57149-57165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34085201

RESUMO

Mine restoration is a long and ongoing process, requiring careful management, which must be informed by site-specific, geochemical risk assessment. Paired topsoil and tree core samples from 4 sites within the uranium mining complex of INB Caldas in Minas Gerais (Brazil) were collected. Soil samples were analysed for their total content of Co, Fe, Pb, U and Zn by XRF, and subsequently, the potential environmental bioavailability of these metals were investigated by DGT and pore water analysis. In addition, results were compared with metal concentrations obtained by Tree Coring from the forest vegetation. In all sampling areas, mean total concentrations of U (Ctot. = 100.5 ± 66.5 to 129.6 ± 57.1 mg kg-1), Pb (Ctot. = 30.8 ± 12.7 to 90.8 ± 90.8 mg kg-1), Zn (Ctot. = 91.5 ± 24.7 to 99.6 ± 10.3 mg kg-1) and Co (Ctot. = 73.8 ± 25.5 to 119.7 ± 26.4 mg kg-1) in soils exceeded respective quality reference values. Study results suggest that AMD caused the increase of labile concentrations of Zn in affected soils. The high lability of the elements Pb (R = 62 ± 34 to 81 ± 29%), U (R = 57 ± 20 to 77 ± 28%) and Zn (R = 21 ± 25 to 34 ± 31%) in soils together with high bioconcentration factors found in wood samples for Pb (BCF = 0.0004 ± 0.0003 to 0.0026 ± 0.0033) and Zn (BCF = 0.012 ± 0.013 to 0.025 ± 0.021) indicated a high toxic potential of these elements to the biota in the soils of the study site. The combination of pore water and DGT analysis with Tree Coring showed to be a useful approach to specify the risk of metal polluted soils. However, the comparison of the results from DGT and Tree Coring could not predict the uptake of metals into the xylems of the sampled tree individuals.


Assuntos
Metais Pesados , Poluentes do Solo , Urânio , Disponibilidade Biológica , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Mineração , Solo , Poluentes do Solo/análise , Urânio/análise , Zinco/análise
15.
Talanta ; 226: 122119, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676674

RESUMO

Chemical speciation is a relevant topic in environmental chemistry since the (eco)toxicity, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). Maintaining the chemical stability of the species and avoiding equilibrium disruptions during the sample treatment is one of the biggest challenges in chemical speciation, especially in environmental matrices where the level of concomitants/interferents is normally high. To achieve this task, strategies based on chemical properties of the species can be carried out and pre-concentration techniques are often needed due to the low concentration ranges of many species (µg L-1 - ng L-1). Due to the significance of the topic and the lack of reviews dealing with sample preparation of metal (loid)s (usually, sample preparation reviews focus on the total metal content), this work is presented. This review gives an up-to-date overview of the most common sample preparation techniques for environmental samples (water, soil, and sediments), with a focus on speciation of metal/metalloids and determination by spectrometric techniques. Description of the methods is given, and the most recent applications (last 10 years) are presented.

16.
Curr Pollut Rep ; 6(3): 264-280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879840

RESUMO

"Innovative actions towards a pollution free-planet" is a goal of the United Nations Environment Assembly (UNEA). Aided by both the Food and Agricultural Organisation (FAO) and its Global Soil Partnership under the 3rd UNEA resolution, a consensus from > 170 countries have agreed a need for accelerated action and collaboration to combat soil pollution. This initiative has been tasked to find new and improved solutions to prevent and reduce soil pollution, and it is in this context that this review provides an updated perspective on an emerging technology platform that has already provided demonstrable utility for measurement, mapping, and monitoring of toxic trace elements (TTEs) in soils, in addition to the entrapment, removal, and remediation of pollutant sources. In this article, the development and characteristics of functionalized mesoporous silica nanomaterials (FMSN) will be discussed and compared with other common metal scavenging materials. The chemistries of the common functionalizations will be reviewed, in addition to providing an outlook on some of the future directions/applications of FMSN. The use of FMSN in soil will be considered with some specific case studies focusing on Hg and As. Finally, the advantages and developments of FMSN in the widely used diffusive gradients-in-thin films (DGT) technique will be discussed, in particular, its advantages as a DGT substrate for integration with oxygen planar optodes in multilayer systems that provide 2D mapping of metal pollutant fluxes at submillimeter resolution, which can be used to measure detailed sediment-water fluxes as well as soil-root interactions, to predict plant uptake and bioavailability.

17.
Sci Total Environ ; 743: 140730, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758836

RESUMO

The main land use/land cover changes (LULCC) have been associated with population growth and energy policies in the São Paulo State, Brazil, since 1970. The LULCC can alter the behavior of trace elements in different environmental systems, with the riverbed sediments being the main reservoirs or sinks for trace elements, and thus become a valuable environmental archive on temporal changes. Thus, the main purpose of the study was to apply a multi-tracer analysis to estimate the historical evolution of pollution in riverbed sediment of a subtropical watershed, the lower course of the Piracicaba River, São Paulo, Brazil. 210Pb measurements done on river sediment core samples allowed estimating a sedimentation rate of 9 mm yr-1 between 1971 and 2001. Zn was the most abundant trace element in the sediment core, followed by Cr, Cu, Ni, Pb, Sc and Cd. The total concentrations of Cd, Cr, Ni, Sc and Pb presented practically no variations in the sediment core, with a continuous excess of ca. 0.27 µg g-1 yr-1 of Cu and of ca. 0.54 µg g-1 yr-1 of Zn between 1971 and 2001. The excess of Cu and Zn was associated with labile fractions, in particular with carbonate bound to Zn and organic matter bound to Cu. The assessment of trace metal pollution indicated that most of the trace elements were of geogenic origin, except for Cu and Zn. According to the sediment quality guidelines used in Brazil, Pb showed no potential toxic effect, Cu, Cr and Zn were intermediate to Threshold Effect Level (TEL) and Probable Effect Level (PEL) and the Cd and Ni concentrations were above the PEL limits. The elemental and isotopic analysis of C and N and the C/N ratio indicated that the anthropogenic origin of POM found in the sediment core is related mainly to domestic sewage.

18.
Mol Pharm ; 17(7): 2287-2298, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515970

RESUMO

Helicobacter pylori inhabits the gastric epithelium and can promote the development of gastric disorders, such as peptic ulcers, acute and chronic gastritis, mucosal lymphoid tissue (MALT), and gastric adenocarcinomas. To use nanotechnology as a tool to increase the antibacterial activity of silver I [Ag(I)] compounds, this study suggests a new strategy for H. pylori infections, which have hitherto been difficult to control. [Ag (PhTSC·HCl)2] (NO3)·H2O (compound 1) was synthesized, characterized, and loaded into polymeric nanoparticles (PN1). PN1 had been developed by nanoprecipitation with poly(ε-caprolactone) polymer and poloxamer 407 surfactant. System characterization assays showed that the PNs had adequate particle sizes and ζ-potentials. Transmission electron microscopy confirmed the formation of polymeric nanoparticles (PNs). Compound 1 had a minimum inhibitory concentration for H. pylori of 3.90 µg/mL, which was potentiated to 0.781 µg/mL after loading. The minimum bactericidal concentration of 7.81 µg/mL was potentiated 5-fold to 1.56 µg/mL in PN. Compound 1 loaded in PN1 displayed better activity for H. pylori biofilm formation and mature biofilm. PN1 reduced the toxicity of compound 1 to MRC-5 cells. Loading compound 1 into PN1 inhibited the mutagenicity of the free compound. In vivo, the system allowed survival of Galleria mellonella larvae at a concentration of 200 µg/mL. This is the first demonstration of the antibacterial activity of a silver complex enclosed in polymeric nanoparticles against H. pylori.


Assuntos
Antibacterianos/farmacologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Nanopartículas Metálicas/química , Polímeros/química , Compostos de Prata/farmacologia , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Compostos de Prata/química
19.
Sci Total Environ ; 659: 115-121, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597461

RESUMO

The sugar and alcohol industries provide promising alternative energy sources to replace the use of petroleum derivatives. Vinasse is a byproduct of the alcoholic fermentation of various raw materials, and is used in the fertirrigation of sugarcane plantations. However, its excessive use leads to many soil and groundwater related problems, including toxicity to living organisms, acidification of soil and water, accumulation of heavy metals, and contamination of groundwater. The use of integrated systems, such as stabilization, filtration, and phytoremediation, have attracted interest in the treatment of wastewater from various sources, as these highly effective biogeochemical systems can reduce the pollutant concentrations in wastewater, thereby reducing its adverse effects. The aim of this work was to develop a hybrid treatment system to optimize the physical and chemical characteristics of vinasse so that it can be used as fertilizer for crops with a lower pollution impact. The results of this study validated the effectiveness of the proposed system and demonstrated positive modifications of vinasse.


Assuntos
Produção Agrícola/métodos , Recuperação e Remediação Ambiental/métodos , Fertilizantes/análise , Resíduos Industriais/análise , Saccharum/química , Águas Residuárias/análise
20.
Anal Chim Acta ; 983: 54-66, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28811029

RESUMO

Chemical fractionation, speciation analysis and bioavailability of metals and metalloids in waters have received increased attention in recent years. However, this interest is not matched by progress in improving species integrity during standard 'grab' sample collection, processing and storage. Time-averaged, low disturbance sampling, in situ, of trace element species, in particular, is a more reliable approach for environmental chemical surveillance and methods based on the diffusive gradients in thin films (DGT) technique stand out as one of the most widely used of the passive sampler classes, and hence will be the primary focus of this review. The DGT technique was initially developed to sample metals and semi-metals in freshwaters, and later was extended to include marine settings as well as the measurement of metal fluxes in sediments/soils. Nowadays, DGT based technologies are used extensively in a variety of geochemical and environmental health research disciplines. This review specifically surveys the application of the DGT measurement for fractionation and speciation analysis (as defined by IUPAC) of metal or metalloids in aqua. Use of DGT in fresh, estuarine and marine waters, as well as effluents has improved the knowledge base of in situ data related to fractionation processes (e.g. labile and inert species; organic and inorganic species; dissolved and nanoparticles), and speciation analysis. This supports not only the calculations underpinning numerous software speciation models for cation and anion behavior, but also our understanding of the bioavailability and toxicity of these species. The measurement of metals by DGT are easy to obtain, which is core to its popular use, but often the results require sophisticated interpretation and a wide spectrum of chemical knowledge to really explain in full, which is why the method has and continues to capture the interest of researchers.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes Químicos da Água/análise , Disponibilidade Biológica , Fracionamento Químico , Difusão , Água Doce/análise , Água do Mar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...